If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(2x^2)+(2x)+4=1252
We move all terms to the left:
(2x^2)+(2x)+4-(1252)=0
We add all the numbers together, and all the variables
2x^2+2x-1248=0
a = 2; b = 2; c = -1248;
Δ = b2-4ac
Δ = 22-4·2·(-1248)
Δ = 9988
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{9988}=\sqrt{4*2497}=\sqrt{4}*\sqrt{2497}=2\sqrt{2497}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{2497}}{2*2}=\frac{-2-2\sqrt{2497}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{2497}}{2*2}=\frac{-2+2\sqrt{2497}}{4} $
| 3x/12=27x/24 | | 9x/4=8x/20 | | 8(c+2)c=9 | | (2x–5)/(x+3)=0 | | 2/4+3x=90 | | 2^n=1.25 | | -3x+(x+1)^2=3 | | 1,5-0,2V(x)=0,6 | | 3x/5+5=25 | | (x+1)^2-3(x+1)=0 | | 1,5-0,2√(x)=0,6 | | 2x×5=x-3 | | 1,5-0,2√x=0,6 | | 2y/2+3=12 | | (x+1)(x+1)-3(x+1)=0 | | x²-x-1=0 | | 2+x=7/4 | | 9b-2=2(3b+5 | | 6(2y+3)-6(y+1)=29 | | 3(p-2)+2(p-5)=14 | | 3(5x-1)=30-5x | | 3x+4+3x=9 | | x÷5=3÷15 | | x+2÷3=-7÷8 | | 3x/4=75/4x | | -0.12+0.5x=0.88 | | (x+1)-3(x+1)=0 | | (x+1)²-3(x+1)=0 | | (7x-3)/7=(2x-1)/3 | | 6x+13+1=x−36(6x+1)/3+1=(x-3)/6 | | 6x+13+1=x−36 | | 1/3x-5/2=7/2x-2/3 |